Toxicity of the Cryoprotectants Glycerol, Dimethyl Sulfoxide, Ethylene Glycol, Methanol, Sucrose, and Sea Salt Solutions to the Embryos of Red Drum

1988 ◽  
Vol 50 (3) ◽  
pp. 148-154 ◽  
Author(s):  
S. M. Robertson ◽  
A. L. Lawrence ◽  
W. H. Neill ◽  
C. R. Arnold ◽  
G. McCarty
1954 ◽  
Vol 35 (5) ◽  
pp. 722 ◽  
Author(s):  
A. B. Arons ◽  
C. F. Kientzler

1972 ◽  
Vol 50 (10) ◽  
pp. 1548-1556 ◽  
Author(s):  
Peter Yates ◽  
E. G. Lewars ◽  
P. H. McCabe

Oxidation of cis-cis-1,5-cyclooctadiene with hydrogen peroxide gives cis-5-cyclooctene-trans-1,2-diol (3) which is converted to cis-5-cyclooctene-1,2-dione (6) on treatment with dimethyl sulfoxide and acetic anhydride. Bromination of 6 is accompanied by transannular bonding to give a dibromo keto ether 9a or b. Ketalization of 6 with ethylene glycol gives a monoketal 11 and two diketals 12 and 13 with 1,3-dioxolane and 1,4-dioxane rings, respectively. Bromination of 12 with bromine or pyridinium perbromide is accompanied by transannular bonding and fission of one of the 1,3-dioxolane rings to give a dibromo monoketal ether 15a (or b). Bromination of 12 with N-bromosuccinimide followed by dehydrobromination gives a cyclooctadiene-1,2-dione diketal 20a (or b).


AIChE Journal ◽  
1974 ◽  
Vol 20 (2) ◽  
pp. 326-335 ◽  
Author(s):  
Leroy A. Bromley ◽  
Daljit Singh ◽  
Parthasarathi Ray ◽  
Srinivasan Sridhar ◽  
Stanley M. Read

1970 ◽  
Vol 15 (2) ◽  
pp. 246-253 ◽  
Author(s):  
Leroy A. Bromley ◽  
Anthony E. Diamond ◽  
Emilio Salami ◽  
David G. Wilkins

2013 ◽  
Vol 25 (1) ◽  
pp. 179 ◽  
Author(s):  
J. Galiguis ◽  
C. E. Pope ◽  
M. C. Gómez ◽  
C. Dumas ◽  
S. P. Leibo

The cryopreservation of ovarian tissue is linked to a wide range of possible applications, from oocyte harvesting to allo- and xenotransplantation. These procedures have significant potential for the preservation of valuable genetic material and endangered-species conservation. The objectives of the present study were to (1) compare viability of preantral follicles obtained from fresh v. vitrified feline ovarian cortex, (2) evaluate the effect of apoptotic inhibitors (ROCK inhibitor v. glutathione) on viability of follicles from vitrified samples, and (3) determine the optimal inhibitor concentration for follicle viability. In Experiment 1, 5 × 5 × 1 mm cortical tissue samples were obtained from excised cat ovaries and assigned to either the fresh control or vitrification group. Fresh samples were processed through a 230-micron-pore dissection strainer to collect preantral follicles. Follicles were then stained in Trypan blue to determine membrane integrity and survival rates. Vitrification samples were first equilibrated in 7.5% dimethyl sulfoxide and 7.5% ethylene glycol at ~22°C and then in vitrification solution consisting of 20% dimethyl sulfoxide, 20% ethylene glycol, and 0.5 M sucrose. They were then vitrified on a thin, perforated, metal strip (Cryotissue, Kitazato Biopharma, Fujinomiya, Japan). Samples were later warmed in 1.0 M sucrose at 38°C. Follicles were then collected and assessed for survival. In Experiment 2, follicles were collected from samples vitrified/warmed in cryo-media supplemented with either 3 × 104 nM ROCK inhibitor or 6 nM glutathione. Follicles from samples vitrified/warmed without inhibitor treatment were used as controls. In Experiment 3, tissue samples were vitrified/warmed in cryo-media supplemented with 0, 2, 6, or 10 nM glutathione before follicle viability was determined. Data were evaluated by chi square analysis. In Experiment 1, 637 and 340 follicles were collected from fresh and vitrified samples, respectively. Overall, survival was higher in freshly collected follicles when compared to those from the vitrified group (67 v. 18%, respectively; P < 0.05). Evaluation of apoptotic inhibitors was determined through collection of 314, 354, and 506 follicles from inhibitor-free, ROCK inhibitor, and glutathione-treated media, respectively. Follicles from samples vitrified in inhibitor-free media and in ROCK inhibitor survived at a lower rate than those from glutathione-treated samples (10 and 13% v. 18%, respectively; P < 0.05). In Experiment 3, a total of 539, 641, 625, and 632 follicles were collected from samples treated in 0, 2, 6, and 10 nM glutathione, respectively. There were no statistical differences in follicle survival among the 0, 2, and 6 nM groups. However, follicles treated in 10 nM glutathione survived at a higher rate than those vitrified/warmed in the absence of glutathione (20 v. 14%; P < 0.05). In summary, viability of preantral follicles from ovarian cortical tissue was significantly reduced by vitrification. Despite this, tolerance of such follicles to cryopreservation was improved by vitrifying and warming in cryo-media containing 10 nM glutathione. Partially funded by the LSU/ACRES Collaborative Project.


2019 ◽  
Vol 31 (1) ◽  
pp. 145 ◽  
Author(s):  
S. Ledda ◽  
S. Pinna ◽  
S. Nieddu ◽  
D. Natan ◽  
A. Arav ◽  
...  

Vitrification is a method extensively used for preserving oocytes and embryos and is also gaining acceptance for preserving gonadal tissue. Cryopreservation of spermatogonial stem cells is an applicable method for young males seeking fertility preservation before starting a treatment or can be a tool for genetic preservation of rare or high-value animals. The aim of this work was to evaluate the cryopreservation of testicular tissue from young lambs by vitrification using a new device named E.Vit (FertileSafe, Ness Ziona, Israel) that permits all cryopreservation procedures to be performed in straw. The new device consists of a 0.3-mL straw (Cryo Bio System, IMV, L’Aigle, France) with a capsule containing 50-µm pores inserted at one end. Testicular tissue extracts were prepared from testes of slaughtered lambs (n=10, 40 days old), opened by sagittal sectioning with a microblade and collecting small pieces of testicular tissue (1mm3) from the middle part of the rete testis. Three pieces of gonadal tissue were inserted into each E.Vit device. Each straw was sequentially loaded vertically in two 1.5-mL microtubes, which contained the following solutions: first, the equilibrating solution (7.5% dimethyl sulfoxide+7.5% ethylene glycol+20% FCS in TCM-199) for 6min, followed by 90min in the vitrification solution (18% dimethyl sulfoxide+18% ethylene glycol+0.5M Trehalose+BSA in TCM-199). After exposure to the equilibrating solution and vitrification solution, the solutions were removed and the straws were directly loaded into LN2. The warming procedure consisted of placing the straws directly into 5-mL tubes containing 100, 50, and 25% warming solution (1M sucrose in TCM-199+20% FCS) at 38.6°C for 5min each before arrival into the holding medium. Samples were recovered from the straws incubated at 38.6°C in 5% CO2 in air in TCM 199+5% FCS and evaluated at 0 and 2h post-warming for viability using trypan blue staining. Expression of a panel of specific genes (SOD2, HSP90b, BAX, POUF5/OCT4, TERT, CIRBP, KIF11, AR, FSHR) was analysed by real-time PCR in cryopreserved tissue in vitro cultured for 2h post-warming (2hV), in fresh controls immediately after tissue dissection (0hF), and after 2h of in vitro culture (2hF). The majority of cells survived after vitrification, although viability immediately after warming (0hV: 56%±1.45) or after 2h of in vitro culture (IVC) (2hV: 54±7%) was significantly lower compared with non-cryopreserved fresh controls (0hF: 89%±1.45; ANOVA P&lt;0.05). Expression analysis showed specific patterns for the different genes. Notably, BAX transcript abundance was not affected by vitrification or IVC, indicating an acceptable level of stress for the cells. The genes HSP90b and CIRBP were down-regulated in 2hF but increased in 2hV, as expected. Expression of SOD1 and OCT4 was altered by vitrification but not by IVC. Conversely, expression of TERT, KIF11, and AR was affected by both IVC and cryopreservation (ANOVA P&lt;0.05). This novel protocol for testicular tissue cryopreservation of prepubertal animals may be a promising strategy for fertility preservation and can contribute as a new approach in the development of large-scale biodiversity programs.


2021 ◽  
Vol 33 (2) ◽  
pp. 120
Author(s):  
E. Girka ◽  
K. R. Bondioli

Vitrification has the potential to be a valuable technique for preservation of bovine oocytes; however, this method often results in abnormal microtubule and chromosome arrangement. The aim of this experiment was to evaluate taxol and epothilone B as meiotic spindle stabilising pretreatments in a vitrification protocol. Bovine oocytes were purchased and matured invitro during shipment. At 18h of maturation, oocytes were divided randomly into control, taxol, and epothilone B treatments (Table 1). All treatments were prepared in invitro maturation (IVM) medium (IVF Biosciences). Partially denuded oocytes were incubated in either control or treatment medium for 15min at 38.5°C before vitrification. Oocytes were incubated in an equilibration solution (10% dimethyl sulfoxide, 10% ethylene glycol) for 5min, transferred to a vitrification solution (20% dimethyl sulfoxide, 20% ethylene glycol, 0.5M sucrose), loaded onto a Cryolock, and plunged into liquid nitrogen within 45s. For warming, a Cryolock was placed directly into a 0.5M sucrose solution and incubated for 3min. Oocytes were transferred to a 0.25M solution for 3min and washed in the basal solution used for vitrification and warming media (Dulbecco’s phosphate-buffered saline, 20% fetal bovine serum). Once warmed, oocytes were transferred to IVM medium for a 4-h recovery period and completely denuded before staining. Staining to evaluate spindle morphology was performed with anti α-tubulin primary antibody and secondary antibody Alexa Fluor 488. Oocytes were also stained with Hoechst to evaluate chromosome arrangement. Both spindle morphology and chromosome arrangement data were analysed using a logistic regression with a binomial response variable (normal/abnormal). Both 0.5μM and 1.0μM Taxol treatments had no effect on either meiotic spindle or chromosome arrangement compared with the control group (P&gt;0.05). The 2.0μM taxol treatment improved chromosome configuration (P&lt;0.05) with no effect on microtubule distribution compared with the control group (P&gt;0.05). All epothilone B treatments resulted in disruption of microtubule distribution and chromosome arrangement compared with control (P&lt;0.001) and resulted in a consistent abnormality hypothesised to be tubulin polymerization. These results indicate that taxol is capable of increasing the occurrence of normal chromosome arrangement in vitrified bovine oocytes and that epothilone B may cause additional harm to the oocyte that is not associated with the metaphase plate. Table 1. Effect of stabilisation agents on meiotic spindle of invitro-matured bovine oocytes Treatment n Normal microtubule distribution (%) Normal chromosome arrangement (%) Control 100 44 47 0.5μM Taxol 104 44 37 1.0μM Taxol 98 43 56 2.0μM Taxol 102 49 62a 0.5μM Epothilone B 103 11b 11b 1.0μM Epothilone B 97 6b 8b 2.0μM Epothilone B 100 2b 1b aP&lt;0.05;. bP&lt;0.001: Different superscripts within a column indicate a significant difference.


Sign in / Sign up

Export Citation Format

Share Document